Self-assembly of ternary insulin-polyethylenimine (PEI)-DNA nanoparticles for enhanced gene delivery and expression in alveolar epithelial cells.
نویسندگان
چکیده
Enhancing gene delivery and expression in alveolar epithelial cells could offer the opportunity for the treatment of acquired and inherited lung diseases. Here, we show that particle adsorption of human insulin (INS) is capable of increasing plasmid DNA (pDNA) delivery from polyethylenimine (PEI) nanoparticles specifically in alveolar epithelial cells. INS receptors were predominantly detected on alveolar but not on bronchial epithelial cells. INS was adsorbed on the surface of PEI gene vectors by spontaneous self-assembly resulting in ternary PEI-pDNA-INS nanoparticles. Surface adsorption was confirmed by particle size, surface charge, and fluorescence resonance energy transfer (FRET) measurements. INS adsorption significantly increased gene expression of PEI-pDNA nanoparticles up to 16-fold on alveolar epithelial cells but not on bronchial epithelial cells. This increased gene expression was INS receptor specific. Our results demonstrate that targeting INS receptor for gene delivery in alveolar epithelial cells represents a promising approach for enhanced gene delivery and expression.
منابع مشابه
Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملShRNA-mediated knock-down of CD200 using the self-assembled nanoparticle-forming derivative of polyethylenimine
Objective(s): ShRNA-mediated silencing strategy is considered to be a potent therapeutic approach. The present study aimed to assess the ability of the previously prepared polyethylenimine (PEI) derivative for the shRNA knock-down of the CD200 gene on the cells obtained from the patients with chronic lymphocytic leukemia (CLL). Materials and Methods: Since there are several investigations...
متن کاملModified Polyethylenimine: Self Assemble Nanoparticle Forming Polymer for pDNA Delivery
Objective Polyethylenimine (PEI), a readily available synthetic polycation which has high transfection efficiency owing to its buffering capacity was introduced for transfection a few years ago. But it has been reported that PEI is cytotoxic in many cell lines. In this study, in order to enhance the transfection efficiency of 10 kDa PEI and reduce its toxicity, hydrophobic residues were grafte...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 10 10 شماره
صفحات -
تاریخ انتشار 2009